Students' Types of Interest in Physics

CAR AND

Sarah Zoechling

Martin Hopf | University of Vienna, AT Julia Woithe and Sascha Schmeling | CERN, Geneva, CH sarah.zoechling@cern.ch

Most students can be categorised into one single type of interest in physics

Theoretical and Empirical Background

What is "Interest"?

Interest is ...

- ✤ a specific relationship between a person and an object.
- multidimensional:
 - emotional,
 - value-related, and
 - cognitive-epistemic components

(Krapp, 2002; Hidi & Renninger, 2006)

Interest in Physics

"... most studies report a positive effect of context-based science education on students' interest ..."

(Habig et al., 2018)

Types of Interest in Physics

The IPN study distinguishes between **3 types of interest** (Sievers, 1999; Rost, Sievers, Häußler, Hoffmann, & Langeheine, 1999)

- Generally and highly interested
- 2. Highly interested in relation to nature and humans, applications, and relevance for society
- Interest profiles are similar to Type 1 or Type 2 (depending on content area)

Types of Interest in Physics

The IPN study distinguishes between **2 types of interest** (Sievers, 1999; Rost, Sievers, Häußler, Hoffmann, & Langeheine, 1999)

 Generally and highly interested

2. Highly interested in relation to nature and humans, applications, and relevance for society

Physics? Only in the right contexts!

Previous studies did not ...

- describe how interesting different contexts are relative to each other within the students' different types of interest.
- include modern physics content areas, such as particle physics.

Research Interest and Design

RQ: Into which different **types of interest** in physics can Germanspeaking students aged 14 to 16 years be categorised, while **comparing classical and modern physics content areas** (namely mechanics and particle physics)?

Hypotheses: Interest types (1, 2, 3) are valid for today's students and for classical as well as modern physics content areas. Within each type of interest, different contexts are more or less interesting relative to each other.

Research Design

Online questionnaire in German language to assess

Interest in Mechanics

from IPN study (Häußler, Lehrke, & Hoffmann, 1998)

Interest in Particle Physics

modelled on IPN study (Häußler, Lehrke, & Hoffmann, 1998)

Questionnaire

Mechanics

How interested are you in doing the following?

Getting insight into the artificial organs (e.g., heart as blood pump) and joints used in medicine today

My interest in it is ...

Questionnaire

Particle Physics

How interested are you in doing the following?

My interest in it is ...very highhighmediumlowvery lowGetting insight into the
workflow in a medical
diagnostic centreOOOO

Research Design

Cross-cohort study: German-speaking students aged 14-16 years (May - September 2021)

- Sample size: 1214 students
 - **Different German-speaking countries represented** Austria (N=798), Germany (N=233), and Switzerland (N=183)
 - Both sexes equally represented Girls (N=595), boys (N=529), prefer not to say (N=90)
- Analysis method: Mixed Rasch rating scale model

Results

Results

Students' Interest in Mechanics

Model of two latent groups describes the data the best

- **Group 1_M**: 49% of the sample
- **Group 2_M:** 51% of the sample
- **The Different mean interest** (Group $1_M > \text{Group } 2_M$)
- Similar interest profiles

Mechanics Interest Profiles

Students' Interest in Particle Physics

Model of three latent groups describes the data the best

- Group 1_{PP}: 45% of the sample
- Group 2_{PP}: 34% of the sample
- Group 3_{PP}: 21% of the sample

✤ Different mean interest: (Group 3_{PP} > Group 1_{PP} > Group 2_{PP})

Particle Physics Interest Profiles

Students' Interest in Particle Physics

- Interest profiles of Group 1_{PP} and 2_{PP} are similar! (79% of the sample)
- Different interest profile of Group 3_{PP}, which has the highest mean interest in particle physics!
 (21% of the sample)

Discussion and Implications for Practice

Discussion

Mechanics

100% of the sample (Groups 1_M and 2_M) have a similar interest profile!

Discussion

Mechanics

100% of the sample (Groups 1_M and 2_M) have a similar interest profile!

Particle Physics

- 79% of the sample (Groups 1_{PP} and 2_{PP}) have a similar interest profile!
- 21% of the sample (Group 3_{PP}) are highly interested in Particle Physics!

Conceptualisation of Interest in Physics

Even fewer students are additionally interested in contexts related to
(1) science, e.g., "elementary particles"
(2) technology, e.g., "garage"

Fewer students are additionally interested in everyday life contexts: specific examples, e.g., "digital camera"

Most students are only interested in contexts related to
(1) one's own body, e.g., "artificial joints (medicine)"
(2) socio-scientific issues, e.g., "smuggled arms"
(3) existential questions of humankind, e.g., "big bang theory"

Physics? Only in the right contexts!

Number of students

Implications for Practice

Educators trying to increase their students' interest can match the design of their learning activities with the conceptualisation of interest.

iversität

Most students can be categorised into one single type of interest in physics

Thank you very much for your attention!

CARDING S

Looking forward to your comments and questions!

References

- Drechsel, B., Carstensen, C., & Prenzel, M. (2011). The Role of Content and Context in PISA Interest Scales: A study of the embedded interest items in the PISA 2006 science assessment. International Journal of Science Education, 33(1), 73–95. <u>https://doi.org/10.1080/09500693.2010.518646</u>
- 2. Habig, S., Blankenburg, J., van Vorst, H., Fechner, S., Parchmann, I., & Sumfleth, E. (2018). Context characteristics and their effects on students' situational interest in chemistry. *International Journal of Science Education, 40*(10), 1154-1175. https://doi.org/10.1080/09500693.2018.1470349
- 3. Häußler, P., Lehrke, M., & Hoffmann, L. (1998). *Die IPN-Interessenstudie Physik*. Kiel: IPN.
- 4. Krapp, A. (2002). Structural and dynamic aspects of interest development: theoretical considerations from an ontogenetic perspective. *Learning and Instruction, 12*, 409. <u>https://doi.org/10.1016/S0959-4752(01)00011-1</u>
- Levrini, O., De Ambrosis, A., Hemmer, S., Laherto, A., Malgieri, M., Pantano, O., & Tasquier, G. (2017). Understanding first-year students' curiosity and interest about physics—Lessons learned from the HOPE project. European Journal of Physics, 38(2), 025701. <u>https://doi.org/10.1088/1361-6404/38/2/025701</u>
- 6. Rost, J., Sievers, K., Häußler, P., Hoffmann, L., & Langeheine, R. (1999). Struktur und Veränderung des Interesses an Physik bei Schülern der 6. bis 10. Klassenstufe. *Zeitschrift für Entwicklungspsychologie und pädagogische Psychologie,* 31(1), 18-31. <u>https://doi.org/10.1026//0049-8637.31.1.18</u>
- 7. Sievers, K. (1999). Struktur und Veränderung von Physikinteressen bei Jugendlichen. (Doctoral thesis). Universität Kiel, Kiel.
- 8. Student group photo created by lookstudio <u>www.freepik.com</u>

Back-up Slides

32

IPN Interest Study

Germany

Cross-sectional and longitudinal study

- Longitudinal: 51 classes participated annually (1984 – 1989, 5th - 10th grade)
- Cross-sectional: 24 classes each participated once (1984, 5th - 10th grade)
- Cohort: 24 classes (9th grade) participated once (1984 – 1989)

(Häußler, Lehrke, & Hoffmann, 1998)

Abb. 3.1: Übersicht über den Erhebungsplan. Die treppenförmig ansteigenden Kästchen stellen den Längsschnitt, die Kästchen in der unteren Zeile den Querschnitt und die dunklen Kästchen über der 9. Jabrgangsstufe den Kohortenquerschnitt dar.

RQ: Into which different types of interest in physics can German-speaking students aged 14 to 16 years be categorised, while comparing classical and modern physics content areas (namely mechanics and particle physics)?

RQ2: To what extent is **physics-related self-concept** a better clustering variable than gender for distinguishing between different types of interest in mechanics and in particle physics?

Hypothesis: When using self-concept instead of gender as clustering variable, the interest types are described better.

RQ3: Which **physics content area** is overall more interesting, particle physics or mechanics?

Hypothesis: Modern physics contents are more interesting for high-school students than classical ones.

RQ4: To what extent does the **introduction text** about the physics content area mechanics **affect** students' **expressed interest**, when using the same items?

Hypothesis: Students' expressed interest in mechanics changes, when using a different version of the introduction text in combination with the same items.

Examplary Item Categories

Item category	Exemplary item
Learning more about the function principle of technical devices	Learning more about how a particle accelerator works
Learning more about qualitative physics	Learning more about which interaction binds together the elementary particles in the nucleus space
Constructing technical devices	Building a particle detector out of daily life objects

Analysis of the Main Study

Mixed Rasch Analysis:

- 1. Latent class analysis: latent, "qualitative" person variable, according to which persons are sorted into groups
 - ⇒ Type of interest

2. Rasch analysis: individual quantitative parameter within each class

⇒ Degree of interest

home.cern