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HYBRID PIXEL DETECTORS

THE TIMEPIX ELECTRONICS CHIP SERIES
= Technology transfer from particle physics to new fields like medical applications

= Developed within the Medipix2 Collaboration hosted at CERN since 1999 [1]

= Hybrid assembly: segmented silicon sensor bump-bonded to the electronics chip
= 256 x 256 pixels, measuring 55 x 55 pm?, sensitive area: 1.4 x 1.4 cm?

= Different measurements modes per pixel: counting, deposited energy, arrival time
=  Minimum threshold energy is configurable: robust to noise, large detection range

HANDS-ON PARTICLE PHYSICS LEARNING LABORATORY

= Qut-of-school learning place with target group: students age group 16-19
= International audience from more than 20 countries

= |ndependent experimentation in small groups

DETECTION PRINCIPLE

= |onising radiation frees electron-hole pairs in the depletion zone of the silicon.

= The charges are collected through an electrical field, converted into voltage pulses
and digitalized by Timepix (depending on the sensor either electrons or holes).

/ = The duration of the pulse is measured per pixel in energy mode.

electronics chip Energy range per pixel after calibration with known sources of ionising radiation:

~4 keV up to several MeV

MX-10 particle camera,
Timepix-based product
from Jablotron

200 M2 MODULAR LABORATORY SPACE AT CERN

= state-of-the-art IT equipment incl. videoconferencing

= high-tech equipment in the framework of 14 experiments linked to
particle physics and CERN's scientific programme and technologies [3]

TEST BED FOR PHYSICS EDUCATION RESEARCH
= |terative re-design of workshops, experiments, and student worksheets
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EXAMPLES OF POSSIBLE EXPERIMENTS TESTED WITH THE MX-10 DETECTOR

BACKGROUND RADIATION PROPERTIES OF IONISING RADIATION X-RAY IMAGING
Students can study tracks of particles originating from space or Students can use the detector to verify the inverse square law, Combining the MX-10 detector with an X-Ray source, students can
naturally occurring radioactive isotopes in real-time. They distinguish determine emission spectra of radioactive sources and examine measure the energy spectrum of the X-Ray source or record
different types of particles by their specific signature in the detector. unknown radioactive materials. radiographs of objects like memory cards.
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ACCOMPANYING RESEARCH ON STUDENTS® CONCEPTIONS ABOUT RADIATION

STUDENTS’ CONCEPTIONS ABOUT RADIATION STUDENTS’ CONCEPTIONS IN S’CooL LAB WORKSHOPS
Concepts associated with ionising radiation [R1] and documented students' conceptions [R1-11] Prediction-Observation-Explanation (POE) tasks [4] are used to assess students’ conceptions.
EXAMPLE EXPERIMENTAL TASK:
Radioactivity Place a sheet of black paper and a sheet of aluminium of the same thickness next to each other
between the X-Ray source and the pixel detector. Compared to the black paper, which number of
Source lonising radiation Recelver photons will your detector measure behind the aluminium foil: higher, lower, the same, or zero? Explain!
Radioactive Material Properties of Radiation Types of Radiation Absorption / Interaction
= Activity depends on = Without source, radiation = | ack of distinction between q, = Radiation can be stopped o _
external conditions e.g. lingers a while [R4] B, v, X radiation [R3], [R4] not at all or 100% [R6] Prediction Observation
temperature [R4] = Properties of ionising = Natural background radiation = Receiver accumulates / higher | ,In aluminium, new particles are produced.” 7 3
= Half-live is the dangerous radiation are similar to those unknown (e.g. cosmic contains radiation after o _ L
timespan, after that no of light e.g. reflected by radiation, Radon) [R9], [R10] irradiation [R4], [R5] lower | ,Aluminium has a higher density. 35 61
danger is left [R4] screen [R6], transparency of = Gamma rays are more = Receiver becomes the same | ,Aluminium is not the same as lead.” 7 4
material is the same [R11] dangerous than X-Rays [R8] radioactive after . . ,
= Radiating particles [R7] irradiation [R3], [R4], [R8] Aluminium reflects X-Rays.
zero . . L w 26 0
LZAluminium is not transparent for radiation.

(In blue: students’ conceptions which can be addressed in S’Cool LAB workshops)

= |ack of distinction between concepts associated with radioactivity and ionising radiation [R1-6] = By using POE tasks during a test phase, known students’ conceptions have been reproduced when

= context sensitivity of harmfulness, e.qg. working with pixel detectors in S’Cool LAB.
- radiation is safe in hospitals [R3], [R5], [R7] = A concept test based on the findings from POE tasks is under development and will be used to measure
* radiation is always dangerous, especially if artificial [R4] concept learning in S'Cool LAB.
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